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Abstract. Ant Colony Optimization is an evolutionary method that

has recently been applied to scheduling problems. We propose an ACO

algorithm for the Single Machine Total Weighted Tardiness Problem.

Compared to an existing ACO algorithm for the unweighted Total Tar-

diness Problem our algorithm has several improvements. The main nov-

elty is that in our algorithm the ants are guided on their way to good

solutions by sums of pheromone values. This allows the ants to take into

account pheromone values that have already been used for making earlier

decisions.

1 Introduction

Ant Colony Optimization (ACO) is an evolutionary metaheuristic to solve com-
binatorial optimization problems by using principles of communicative behaviour
found in real ant colonies (for an introduction and overview see [5]). Recently
the ACO approach has been applied to scheduling problems, like Job-Shop [2, 7],
Flow-Shop [13], and the Single Machine Total Tardiness problem [1]. Bullnheimer
et al. [1] have compared an ACO algorithm with several other heuristics to solve
the Single Machine Total Tardiness problem (e.g. decomposition heuristics, in-
terchange heuristics and simulated annealing). They have shown that the ACO
algorithm found the optimal solution of 125 benchmark problems more often
than the other heuristics (these benchmark problems where generated with the
same method from [12] as the benchmarks problems used in this paper ).

In this paper we propose alternative and improved ways to solve the Single
Machine Total Tardiness problem by ACO. Moreover, we also study the weighted
version of the total tardiness problem.

In ACO algorithms several generations of arti�cial ants search for good solu-
tions. Every ant of a generation builds up a solution step by step going through
several probabilistic decisions until a solution is found. In general, ants that
found a good solution mark their paths through the decision space by putting
some amount of pheromone on the edges of the path. The following ants of the
next generation are attracted by the pheromone so that they will search in the
solution space near good solutions. In addition to the pheromone values the
ants will usually be guided by some problem speci�c heuristic for evaluating the
possible decisions.
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The approach used in [1] and [13] to solve scheduling problems with ACO
algorithms is to use a pheromone matrix T = fTijg where pheromone is added to
an element Tij of the pheromone matrix when a good solution was found where
job j is the ith job on the machine. The following ants of the next generation
then directly use the value of Tij to estimate the desirability of placing job j as
the ith job on the machine when computing a new solution.

Here we propose a di�erent approach. Instead of using only the value of Tij
the ants use

Pi

k=1
Tkj to compute the probability of placing job j as the ith

on the machine. A problem with using only Tij can occur when the ant does
not chose job j as the ith job in the schedule. Because, if the Ti+1;j, Ti+2;j ; : : :
values are small then job j might be scheduled much later than at the ith place
(and possibly long after its due date). It is likely that this will not happen

when using
Pi

k=1 Tkj. Note, that this approach di�ers from nearly all other ant
algorithms proposed so far, in that we base one possible decision of an ant on
several pheromone values. The only other work that uses several pheromone
values to estimate the quality of one possible decision is [11]. Moreover, we let
the ants make optimal decisions when this is possible and use a heuristic that is
a modi�cation of the heuristic used in [1].

This paper is organized as follows. The Single Machine Total Weighted Tardi-
ness Problem is de�ned in Section 2. In Section 3 we describe an ACO algorithm
for the unweighted problem. The pheromone summation rule is introduced in
Section 4. Section 5 contains further variants and improvements. The choice of
the parameter values of our algorithms used in the test runs and the test in-
stances and are described in Section 6. The results are reported in Section 7. A
conclusion is given in Section 8.

2 The Single Machine Total Weighted Tardiness Problem

The Single Machine Total Weighted Tardiness Problem (SMTWTP) is to �nd
for n jobs, where job j, 1 � j � n has a processing time pj, a due date dj,
and a weight wj , a non-preemptive one machine schedule that minimizes T =Pn

j=1 wj �maxf0; Cj � djg where Cj is the completion time of job j. T is called
the total weighted tardiness of the schedule. The unweighted case, i.e. wj = 1
for all j 2 f1; : : : ; ng, is the Single Machine Total Tardiness Problem (SMTTP).

It is known that SMTTP is NP-hard in the weak sense [8] and SMTWTP
is NP-hard in the strong sense [10]. A pseudopolynomial time algorithm for
SMTWTP in case that the weights agree with the processing times (i.e. pj <

ph implies wj � wh) was given in [10]. Observe, that the last result implies
that SMTTP is pseudopolynomial time solvable. For an overview over di�erent
heuristics for SMTWTP see [4].

3 ACO Algorithm for SMTTP

The ACO algorithm of Bullnheimer et al. [1] is described in this section. The
general idea was to adapt an ACO algorithm called ACS-TSP for the traveling
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salesperson problem of Dorigo et al. [6] for the SMTTP. In every generation
each of m ants constructs one solution. An ant selects the jobs in the order in
which they will appear in the schedule. For the selection of a job the ant uses
heuristic information as well as pheromone information. The heuristic informa-
tion, denoted by �ij, and the pheromone information, denoted by �ij, are an
indicator of how good it seems to have job j at place i of the schedule. The
heuristic value is generated by some problem dependent heuristic whereas the
pheromone information stems from former ants that have found good solutions.
With probability q0, where 0 � q0 < 1 is a parameter of the algorithm, the ant
chooses a job j from the set S of jobs that have not been scheduled so far which
maximizes

[�ij ]
�
[�ij]

�

where � and � are constants that determine the relative inuence of the
pheromone values and the heuristic values on the decision of the ant. With
probability 1�q0 the next job is chosen according to the probability distribution
over S determined by

pij =
[�ij]

�
[�ij]

�

P
h2S [�ih]

� [�ih]
�

The heuristic values �ij are computed according the Modi�ed Due Date rule
(MDD), i.e.,

�ij =
1

maxfT + pj ; djg
(1)

where T is the total processing time of all jobs already scheduled.
After an ant has selected the next job j, a local pheromone update is per-

formed at element (i; j) of the pheromone matrix according to

�ij = (1� �) � �ij + � � �0

for some constant �, 0 � � < 1 and where

�0 =
1

m � TEDD

and TEDD is the total tardiness of the schedule that is obtained when the
jobs are ordered according to the Earliest Due Date heuristic (EDD), i.e., with
falling values of 1=dj. The value �0 is also used to initialize the elements of the
pheromone matrix.

After all m ants have constructed a solution the best of these solutions is
further improved with a 2-opt strategy. The 2-opt strategy considers swaps be-
tween all pairs of jobs in the sequence. Then it is checked whether the so derived
schedule is the new best solution found so far.

The best solution found so far is then used to update the pheromone matrix.
But before that some of the old pheromone is evaporated according to
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�ij = (1� �) � �ij

The reason for this is that old pheromone should not have a too strong
inuence on the future. Then, for every job j in the schedule of the best solu-
tion found so far some amount of pheromone is added to element (ij) of the
pheromone matrix where i is the place of job j in the schedule. The amount
of pheromone added is �=T � where T � is the total tardiness of the best found
schedule, i.e.,

�ij = �ij + � �
1

T �

The algorithm stops when some stopping criterion is met, e.g. a certain num-
ber of generations has been done or the best found solution has not changed for
several generations.

4 The Pheromone Summation Rule

In this section we describe a new approach of using the pheromone values which
is used in our ACO algorithm for SMTTP. In general, a high pheromone value �ij
means that it is advantageous to put job j at place i in the schedule. Assume now
that by chance an ant chooses to put some job h at place i of the schedule that
has a low pheromone value �ih (instead of a job j that has a high pheromone
value �ij). Then in order to have a high chance to still end up with a good
solution it will likely be necessary for the ant to place job j not too late in the
schedule when j has a small due date. To some extend the heuristic values �lj
for l > i will then force the ant to choose j soon. But a problem occurs when
the values �lj are small (because no good solutions have been found before that
have job j at some place l > i). Then the product (�lj)� � (�lj)� is small and it is
likely that the ant will not choose j soon. In this case the ant will end up with
a useless solution having a high total tardiness value.

To handle this problem we propose to let a pheromone value �ij also inuence
later decisions when choosing a job for some place l > i. A simple way to guaranty
this inuence is to use the sum of all pheromone values for every job from the
�rst row of the matrix up to row i when deciding about the job for place i. When
using this pheromone summation rule we have the following modi�ed decision
formulas. An ant chooses as next job for place i in the schedule with probability
q0 the job j 2 S that maximizes

(
iX

k=1

[�kj])
�
� [�kj]

�
(2)

and with probability 1� q0 job j 2 S is chosen according to the probability
distribution over S determined by
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pij =
(
Pi

k=1 [�kj])
� � [�ij]

�

P
h2S (
Pi

k=1 [�kh])
� � [�ih]

�
(3)

5 Further Variations and Improvements

In this section we describe further variations and improvements that we used in
our ACO algorithm.

5.1 Modi�ed Heuristic

A problem when using the heuristic values according to formula (1) is that the
values of maxfT + pj; djg become much larger | due to T | when deciding
about jobs to place at the end of the schedule than they are when placing jobs
at the start of the schedule. As a consequence the heuristic di�erences between
the jobs are, in general, small at the end of the schedule. To avoid this e�ect we
used the following modi�ed � values

�ij =
1

maxfT + pj ; djg � T
(4)

For the weighted problem SMTWTP we multiplied every value on the right
side of equation (4) with the weight wj of job j. Note that jobs with a small
weighted processing time pj=wj have a high heuristic value when T + pj � dj.

5.2 Deterministic Scheduling Between Due Dates

Consider the construction of a schedule for the unweighted problem SMTTP.
Assume that some jobs have already been scheduled. Assume further that the
sum T of the processing times of all jobs scheduled so far lies between some due
date dj and a due date dh > dj and every other due date is smaller than dj or
larger than dh. For this case it is easy to show that it is optimal to schedule all
jobs with a due date � dj before scheduling a job with a due date � dh as long
as the sum of the processing times of the scheduled jobs is at most dh. Moreover
when there are several jobs with due date � dj it is optimal to schedule these
jobs ordered by increasing processing times. If the ants apply this deterministic
rule whenever possible we say that the ants work locally deterministic. Then the
ants will switch between probabilistic and deterministic behaviour.

6 Test Instances and Parameters

We tested the di�erent variants of ACO algorithms on 125 benchmark instances
for SMTWTP of size 100 jobs that are included in the OR-Library [14]. These
benchmark instances were generated as follows: for each job j 2 [1 : 125] an
integer processing time pj is taken randomly from the interval [1 : 100], an

291An Ant Algorithm with a New Pheromone Evaluation Rule 



integer weight wj is taken randomly from the interval [1 : 10] and an integer due
date dj is taken randomly from the interval

2
4
125X
j=1

pj � (1� TF �
RDD

2
);

125X
j=1

pj � (1 � TF +
RDD

2
)

3
5

The value RDD (relative range of due dates) determines the length of the in-
terval from which the due dates were taken. TF (tardiness factor) determines the

relative position of the centre of this interval between 0 and
P

125

j=1 pj . The values
for TF and RDD are chosen from the set f0:2; 0:4; 0:6; 0:8;1:0g. The benchmark
set contains �ve instances for each combination of TF and RDD values. For the
unweighted problem SMTTP we used the same benchmark instances but ignored
the di�erent weights.

Our results for SMTWTP were compared to the best known results for the
benchmark instances that are from [3] and can be found in [14].

The parameters used for the test runs are: � = 1, � = 1, � = 0:1, q0 2 f0; 0:9g.
The number of ants in every generation was m = 20. Every test was performed
with 4 runs on every instance. Every run was stopped after 500 generations.

We used a 2-opt strategy to improve the best solution that was found in every
generation which di�ers slightly from the 2-opt strategy used in [1]. For every
pair of jobs it was checked exactly once whether a swap of these jobs improves
the schedule. A swap that improves the schedule was �xed immediately. Thus
we tried exactly 4950 swaps per generation.

In the following ACS-SMTTP (or short ACS) denotes the algorithm of [1]
as described in Section 3 but with the new 2-opt strategy described in the last
paragraph. Our algorithm ACS-SMTWTP-� is similar to ACS but uses the
pheromone summation rule as described in Section 4. AlgorithmACS-SMTWTP-
H is similar to ACS but uses the new heuristic from Section 5.1. Algorithm ACS-
SMTWTP-D is similar to ACS but additionally uses the deterministic strategy
from Section 5.2 for scheduling between due dates. Algorithms that use combi-
nations of new features are denoted by ACS-SMTWTP-XYZ where X,Y,Z2 f�,
H, Dg (e.g. ACS-SMTWTP-H� uses the new heuristic and the pheromone sum-
mation rule). For shortness we write ACS-XYZ for ACS-SMTWTP-XYZ.

7 Experimental Results

The inuence of the pheromone summation rule (called �-rule in the following)
and the modi�ed heuristic was tested on weighted and unweighted problem in-
stances. Since the parameter q0 has some inuence on the results we performed
tests with q0 = 0 and q0 = 0:9.

Table 1 shows the results for SMTWTP. The average total tardiness values
found by the ACO algorithms for SMTWTP were compared to the average to-
tal tardiness of the best known solutions that are from [3]. The average total
tardiness per instance of the best solutions from [3] is 217851:34. Table 1 shows
that ACS-�H performed better than ACS-H and also that ACS-� performed
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better than ACS (this holds for both cases q0 = 0 and q0 = 0:9). In all cases the
di�erence of the total tardiness values compared to the best known solutions are
at least 61:1% lower for the ACO algorithm with �-rule (79:5 for ACS-�H com-
pared to 204:5 for ACS-H with q0 = 0:9). Moreover, the ACO algorithms with
�-rule found for more instances a better total tardiness than their counterparts
without �-rule (at least 5:3 times as often). The di�erences of the total tardi-
ness values compared to the best known values over the �rst 200 generations are
shown in Figure 1. The best solution of ACS-�H was found after an average of
80 generations, which was after less than 3.5 seconds on a 450 MHz Pentium-II
processor.

Table 1 also shows that the ACO algorithms with modi�ed heuristic per-
formed in all cases better than their counterparts using the heuristic from [1].
For q0 = 0:9 the advantage of the modi�ed heuristic is smaller than for q0 = 0
(e.g. for q0 = 0:9 ACS-�H has a 60:2% smaller di�erence to optimal total tar-
diness than ACS-� compared to a 92:9% smaller di�erence for q0 = 0).

Table 1. Inuence of pheromone summation rule and new heuristic on solution quality
for SMTWTP. Total Tardiness: average di�erence to total tardiness of best found solu-
tions from [3] (average over 500 test runs, 125 instances and 4 runs for each instance);
Better: comparisons between ACS-�H and ACS-H (respectively ACS-� and ACS),
number of instances with smaller average total tardiness (average over 125 instances
and 4 runs for each instance).

weighted ACS-�H ACS-H ACS-� ACS

Total q0 = 0 191.8 3024.7 946.1 9914.7
Tardiness q0 = 0:9 79.5 204.5 200.0 1198.6

q0 = 0 97 2 106 0
Better

q0 = 0:9 86 16 97 3

Table 2 shows the results for the unweighted problem SMTTP. The results
are compared with the average of the best total tardiness values we found for
the unweighted instances, i.e. 54309:5. Similarly as for the weighted problem in
all cases the ACO algorithms with �-rule are better than their counterparts
without �-rule. Also the modi�ed heuristic performed better in all cases than
the heuristic from [1].

Since the 2-opt strategy signi�cantly inuences of the quality of the solutions
we also compared the ACS-�H with ACS-H when using no 2-opt strategy. The
results can be found in Table 3 for SMTWTP and in Table 4 for SMTTP. The
only case where ACS-�H performed not signi�cantly better than ACS-H is the
unweighted case with q0 = 0:9. In this case ACS-H found a slightly better average
total tardiness ACS-�H (di�erence is 331:5 for ACS-H and 332:3 for ACS-�H).
On the other hand ACS-�H found for more instances better solutions than
ACS-H (For 65 instances ACS-�H found better solutions than ACS-H whereas
ACS-H performed better than ACS-�H for 33 instances).
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Fig. 1. SMTWTP: Average di�erence to total tardiness of best found solutions from
[3] over the �rst 200 generations.
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Table 2. Inuence of pheromone summation rule and new heuristic on solution quality
for SMTTP. Total Tardiness: average di�erence to total tardiness of best found solu-
tions (average over 500 test runs, 125 instances and 4 runs for each instance); \Better"
as in Table 1.

unweighted ACS-�H ACS-H ACS-� ACS

Total q0 = 0 47.9 48.5 112.9 256.4
Tardiness q0 = 0:9 7.0 19.0 8.7 26.3

q0 = 0 53 32 82 17
Better

q0 = 0:9 53 22 67 14

Table 3. Inuence of pheromone summation rule and new heuristic on solution quality
for SMTWTP when using no 2-opt. \Total Tardiness" as in Table 1; \Better" as in
Table 1 but comparison between ACS-�H and ACS-H.

no 2-0pt, weighted ACS-�H ACS-H
Total q0 = 0 11894.4 22046.8
Tardiness q0 = 0:9 1733.2 1793.5

q0 = 0 76 48
Better

q0 = 0:9 67 42
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Table 4. Inuence of pheromone summation rule and new heuristic on solution quality

for SMTTP when using no 2-opt. \Total Tardiness" as in Table 2; \Better" as in Table

1 but comparison between ACS-�H and ACS-H.

no 2-0pt, unweighted ACS-�H ACS-H

Total q0 = 0 3943.7 4515.8

Tardiness q0 = 0:9 332.3 331.5

q0 = 0 59 50
Better

q0 = 0:9 65 33

The inuence of the deterministic strategy for scheduling between due dates
for SMTTP has only a minor inuence on the results for the unweighted bench-
mark instances from the OR-Library. The reason is that these instances have
small gaps between the due dates. Thereby, the deterministic strategy does
come into play only rarely. Hence, we created new test instances which have
two neighboured due dates that have a large gap in between. We changed each
of the problem instances from the OR-Library as follows. The jobs were ordered
by their due dates and the due dates of jobs 41 to 59 were set to the same due
date that job 40 has. The average of the best total tardiness values we found for
these modi�ed instances was 56416:3. Table 5 shows for q0 = 0, that ACS-�HD
performed much better than ACS-�H and also that ACS-HD performed much
better than ACS-H. For q0 = 0:9 the ACS-�HD algorithm could not pro�t from
the deterministic scheduling between due dates.

Table 5. Inuence of deterministic strategy between due dates on solution quality for

SMTTP and problem instances with modi�ed due dates. \Total Tardiness as in Table

2; \Better" as in Table 1 but comparison between ACS-�H and ACS-�HD.

unweighted ACS-�H ACS-�HD ACS-H ACS-HD

Total q0 = 0 101.4 45.7 120.1 3.8

Tardiness q0 = 0:9 2.9 8.7 11.1 9.2

q0 = 0 8 78 1 92
Better

q0 = 0:9 36 14 29 36

8 Conclusion

We have introduced a new method to use the pheromone values in an Ant Colony
Optimization (ACO) algorithm for the Single Machine Total Weighted Tardiness
problem. An ACO algorithm using this pheromone summation rule gives better
solutions for 125 benchmark than its counterpart that does not use the summa-
tion rule. This holds also for the unweighted total tardiness problem. Moreover,
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we proposed a new heuristic that can be used by the ants when searching for a
solution. For the unweighted problem we have shown that the ACO algorithm
can pro�t from ants that switch between a deterministic behaviour (in case that
optimal decisions can be made) and the \standard" probabilistic behaviour.
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